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A new pressure formulation for splitting methods is developed that results in high-order 
time-accurate schemes for the solution of the incompressible Navier-Stokes equations. In 
particular, improved pressure boundary conditions of high order in time are introduced that 
minimize the effect of erroneous numerical boundary layers induced by splitting methods. A 
new family of stiffly stable schemes is employed in mixed explicit/implicit time-intgration rules. 
These schemes exhibit much broader stability regions as compared to Adams-family schemes, 
typically used in splitting methods. Their stability properties remain almost constant as the 
accuracy of the integration increases, so that robust third- or higher-order time-accurate 
schemes can readily be constructed that remain stable at relatively large CFL number. The 
new schemes are implemented within the framework of spectral element discretizations in 
space so that flexibility and accuracy is guaranteed in the numerical experimentation. A model 
Stokes problem is studied in detail, and several examples of Navier-Stokes solutions of flows 
in complex geometries are reported. Comparison is made with the previously used first-order 
in time spectral element splitting and non-splitting (e.g., Uzawa) schemes. High-order 
splitting/spectral element methods combine accuracy in space and time, and flexibility in 
geometry, and thus can be very efficient in direct simulations of turbulent flows in 
complex geometries. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The numei-ical solution of the unsteady incompressible Navier-Stokes equations 
that govern viscous flows requires discretization in both space and time. Spatial 
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discretization relates directly to resolution of the most important small-scale 
features of the flow (e.g., boundary layers, streaks, etc.) as well as the size of the 
problem. Temporal discretization, however, relates to unsteady flow phenomena 
(e.g., oscillations), but also dictates directly the form of system of the semi-discrete 
equations to be solved. In particular, the temporal discretization determines 
the form of the pressure equation and represents how well the incompressibility 
constraint is approximated in pressure-velocity formulations. 

The pressure in incompressible flows plays a very particular role as it should 
always be in equilibrium with a time-dependent divergence-free velocity field, but it 
does not appear explicitly in the equation imposing such a divergence condition. 
While it is clear that the governing equation for pressure is a Poisson equation 
derived from the momentum equation by requiring incompressibility, it is less clear 
what boundary conditions (BC) the pressure should be subject to. In recent work 
Gresho and Sani [ 1 ] and Orszag et al. [ 21 addressed the issue of pressure BC and 
concluded that a Neumann-type BC derived from the normal to domain boundary 
momentum equation leads to a correct pressure solution. In particular, in [I] it 
was argued that in the absence of singularities as t + 0 properly derived Neumann 
and Dirichlet BCs lead to the same solution; however, Neumann BCs are more 
general and always provide a unique solution for t 2 0. 

In splitting methods [3], which are the methods we analyze in this work, the 
pressure satisfies a Poisson equation with compatible Neumann BCs. The exact 
form of this BC is very important not only because it directly affects the overall 
accuracy of the scheme, but also because it determines the efficiency of the time- 
stepping algorithm. This is particularly true in simulations of unsteady flows in 
complex geometries, where a separately solvable second-order pressure equation is 
still the only affordable approach. Splitting methods in conjunction with spectral 
and spectral element methods have been used with success in simulating highly 
unsteady flows in nonperiodic and very complex geometries [4-61. In these studies, 
splitting led to first-order accuracy, so that very small time steps were required in 
order to prevent significant time-differencing and splitting errors. 

There have been a number of attempts in the last decade to modify the classical 
splitting method, so that high-order time accuracy be obtained [7-91. A more 
systematic analysis was given more recently in [2], where various different 
approaches were suggested to circumvent the spurious effects of splitting errors 
without any significant loss in efficiency or ease in implementation. Our work here 
is inspired primarily by the work in [2, lo]; in both papers several boundary condi- 
tions for incompressible flows are analyzed and tested for a simple Stokes problem. 
Our objective is to implement an iproved splitting scheme within the context of 
spectral element discretizations [ 1 l-l 33. The good resolution properties of spectral 
operators allow elimination of all spatial errors, so errors in the solutions reflect 
only time differencing errors or errors due to splitting of operators. 

In Section 2, we review the splitting method and present the new, high-order 
pressure boundary conditions; the formulation is general and independent of the 
spatial discretization scheme. However, in order to achieve high spatial accuracy we 
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employ spectral element discretizations for all the tests presented. In Section 3 we 
study in detail a model Stokes problem that has been studied extensively previously 
both analytically and numerically [2, lo]. In Section 4 we introduce and analyze 
med stiflIy stable schemes, and we finally present several test examples 
in Section 5. 

2. SEMI-DISCRETE FORMULATION 

We consider here Newtonian, incompressible flows with constant properties, 
which are governed by the Navier-Stokes equations written in the form, 

av 
at = -VP + vL(v) + N(v) in a, (la) 

subject to the incompressibility constraint 

Q=V.v=O in Sz, (lb) 

where v( = u+? + uj + wi) is the velocity vector, p is the static pressure, and v is the 
kinematic viscosity. Here L and N repreent the linear and nonlinear operators, 
respectively, and are defined as 

L(v)~v*v=v(v.v)-Vx(Vxv) (lc) 
N(v)= - ;[v.Vv+V(v.v)]. (Id) 

The nonlinear terms are written here in a skew-symmetric form following the 
suggestions in [ 143 in order to minimize aliasing effects. To proceed we would like 
to integrate (la), using high-order time-stepping schemes; such schemes are 
routinely used for the numerical solution of ordinary differential equations, 
however their use in the present context gives rise to several questions: (1) 
derivation of mixed explicit-implicit schemes and appropriate treatment of the 
pressure term; (2) investigation of stability and accuracy properties of such 
mixed schemes. In the present section we set up the framework for the mixed 
Adams-Bashforth/Adams-Moulton family. Later, in Section 4 we will consider 
more general multistep families. 

Upon integration of (la) over one time step At we obtain 

V 
n+l -vv”= - 

s 

r.+, 
Vpdt+v 

(?I 
{,;+I L(v) dt + {“+I N(v) dt, 

r” 
@a) 

where the superscript index n refers to time level t, = n At. We can further rewrite 
the pressure term as 

5 
fn+ I 

Vpdt=AtVf’+’ W) 
1. 
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so that p” + I is the scalar field that ensures that the final velocity field is incom- 
pressible at the end of time level (n + 1). It has been common practice (for efficiency 
reasons) to approximate the nonlinear terms via an explicit scheme, for example, a 
J,-order scheme from the Adams-Bashforth family as 

‘“+I N(v) dt = At ‘<f’ j?,N(v”-Y), 
f” y=o 

(2c) 

where j3, are appropriately chosen weights [ 151. The linear terms are approximated 
via implicit schemes for stability reasons; such an approximation, using for 
example, a scheme of order Ji from the Adams-Moulton family gives 

s 

1, + L J,- 1 

L(v)dz=dt 1 yyL(v”+‘-q, (2d) 
fn q=O 

where y4 are appropriately chosen weights for the implicit scheme [15]. The above 
system of Eq. (l), along with the incompressibility constraint, form a strongly 
coupled system. 

Solution to this semi-discrete system of equations can be obtained by further 
splitting Eq. (2a) into three substeps as 

;,;“= ‘2’ jjN(fW) in Q 
C/=0 

0-t 
-= -VP”+1 

At 

V 
n+l -0 J,- I 

-=v c yqL(P-y 
At 

in Q 
l/=0 

@a) 

(3b) 

(3c) 

with Dirichlet boundary conditions Co 

V “+I=6 
0 on af2. WI 

Here G, $ are intermediate velocity fields defined in (3a)-(3b). The classical 
splitting method proceeds by introducing two further assumptions: first that the 
field 6 satisfies the incompressibility constraint, and thus 

v.$=o in 52; (da) 

and second that the same field 0 also satisfies the prescribed Dirichlet condition in 
the direction n, normal to the boundary, 

Q.n=iio.n. (4b) 
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Incorporating these assumptions into Eq. (3b) we finally arrive at a separately 
solvable elliptic equation for the pressure with Neumann boundary conditions in 
the form, 

in Q (4c) 

IIf1 ap v’,.n-$.n -= - 
an At 

on asz. 

The final field vn+i is then obtained by solving the Helmholtz equation (3c)-(3d) 
with the field 0 acting as a forcing term. 

The above splitting approach although very efficient in practice, produces 
solutions that often suffer from large splitting errors which may lead to erroneous 
results [7]. The reason for that is primarily the imposition of the incorrect 
boundary condition (4b), which is inconsistent with the continuous equations 
(la)-( lb). To illustrate this, consider, for example, flow inside an impermeable-wall 
box. The boundary condition (4d) reduces to ap,+ l/an = 0; the correct boundary 
condition can be obtained from the semi-discrete equation (2) 

ap n+l “I- 1 J, - I 

an=“. 
1 B,N(vnpY) + v 2 Y~L(v”+ l-4 )I on asz. (4e) 

y=o C/=0 

The right-hand side of this equation is not zero and is independent of the discretiza- 
tion parameter At, so that the errors induced by (4d) may be of O(1). However, 
imposition of the boundary condition (4e) involves terms at time level (n + 1) and 
leads to a coupled system. 

The exact form of the pressure equation as derived in [2] is 
A 

qjn+‘=V. 
LO i ; +VyyqL(v”+‘-’ 

)I 
in C? 

y=o 

which follows from the requirement that an elliptic equation for the divergence be 
homogeneous (see also Section 2.3). In practice, however, Eq. (4~) is sufficiently 
accurate [2]. 

2.1. High-Order Pressure Boundary Condition 
The obvious alternative therefore is to approximate the linear terms on the 

boundary via an explicit type scheme of order J,, so that Eq. (4e) is replaced by 

ap n+l 

an=“’ [ 

Je ~ I Je- 1 

4;. BqWv”-Y)+v 1 84U PJ)] on asz. (54 
q=o 

A similar approach was suggested ini [2], where a first-order Euler-forward scheme 
(J, = 1) was employed for the linea; terms; it was shown in [2] that such a 
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boundary condition leads to instabilities. However, extending the ideas of [2], 
a stable scheme can be constructed by rewriting the viscous linear terms in 
terms of a solenoidal part which we approximate by an explicit scheme and an 
irrotational part VQ which is approximate by an implicit scheme of appropriate 
order, as 

a,,+’ 
i 

J,- I J,- 1 

an=“’ 
,;, B,W”-‘)+v 1 yyV,‘---, 

C/=0 

J<- I 

+v 1 j?,(-vx(vxv)“-q 
4=0 1 (5b) 

Note that in this latter equation we drop the term y. VQ”” (since we require 
that Q”+i= 0 in order to honor the incompressibility constraint). To demonstrate 
how the form (5b) of the pressure boundary condition prevents propagation 
and accumulation of time-differencing errors, we consider a first-order scheme 
(J, = Ji= 1); here for simplicity we drop the non-linear terms and define w, = 
n .V x (V x v). The exact equation (4e) at time level (n + 1) therefore reads 

(ha) 

If we expand cY’+ ’ around time level n and solve for the normal derivative of the 
divergence we obtain 

aQ II+1 i ap*+l 
an 

=--+u,::+Ata~+ . . . . 
v an 

Finally, incorporating the pressure boundary condition (5b) gives 

aQ IIf1 ad 
dn oc At-L. at 

(6b) 

(6~) 

If we instead write the viscous terms as the Laplacian operator on v, we have 

aQ n+l w+l -_ -- 
an -V an 

n.vZv"+%+,,%+ . 
an at 

and due to the pressure boundary condition we obtain 

aQ PI+1 oc aQ" I Ataw:' 
an an at . 

(6d) 

(6e) 

This latter equation indicates a possible instability arising from modes corre- 
sponding to unit amplification. 
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2.2. ‘Pressure Compatibility Condition 

Solution of the Poisson equation (4~) for the pressure p”+’ with Neumann 
boundary conditions (5b) requires that a compatibility condition hold. In par- 
ticular, the equations for the pressure along with the boundary condition are (here 
we drop the superscripts) 

It is required that 

J,- I 
= 

s c an 
p,(-vo,+n.N)“-4dS 

lJ=O 

(7b) 

The last simplification is due to the earlier definition of CO,. The solvability 
condition therefore requires that 

This equation holds by the definition of 9 in Eq. (3a); here for simplicity we 
assumed zero-Dirichlet boundary conditions for the velocity v”. 

2.3. Divergence-Boundary Layer Analysis 

An estimate of the error incurred in the velocity field due to divergence errors can 
be obtained by applying a simplified boundary layer analysis for the divergence 
Q=Q n+l=v.vn+l. More specifically, taking the divergence of Eq. (2a) and, using 
the substitutions (2bb(2d), we obtain 

$y,vv2Q=g+v. vJ’-flyqL(v”+l-~ ( y=l )> 
( 

Jj- 1 

+v* jxo BP@ 
*-+v2p.,l. (loa) 
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Since the objective is to obtain Q = 0 at the time level (n + 1) we set the right-hand 
side to zero to obtain (4f) and the divergence equation, 

Q-y,vAtV*Q=O. (lob) 

It is clear, therefore, that there exists a (numerical) boundary layer of thickness 
l=Jy,vdt, so that Q=QWe-“l’, and thus the boundary divergence is Q, = 
- I(aQ/&),,. (Here s is a general coordinate normal to the boundary.) Similar 
order of magnitude analysis gives QW = 0(&/&), and thus 

y,v At. 
w (1Oc) 

This relation demonstrates that the time-differencing error of the velocity field is 
one order smaller in At than the corresponding error in the boundary divergence. 
This result agrees with the classical splitting scheme of first-order corresponding to 
the inviscid-type boundary condition (4b). In particular, the order O(1) errors in 
dQ/an result in first-order O(At) errors in the velocity field. Similarly, a first-order 
time treatment of the pressure boundary condition should be expected to produce 
second-order results in the velocity field. 

The above argument clearly demonstrates that the time accuracy of the global 
solution is directly dependent on the boundaryh values of the divergence (i.e., 
aQ/an) and, therefore (see Eq. (6a)), on the treatment of pressure boundary 
conditions. 

3. NUMERICAL RESULTS-PART 1 

In this section we employ Adams explicit and implicit schemes up to third-order 
to implement the formulation described in Section 2. The accuracy of the overall 
scheme can be characterized by the set of parameters (J,, J,, Ji) denoting the 
individual accuracy of the explicit integration (nonlinear terms), the pressure 
boundary condition, and the implicit integration (viscous terms), respectively. 

3.1. Stokes Channel Flow 
As a first test problem we consider a time-dependent Stokes flow problem 

between parallel plates which has been studied extensively before analytically and 
numerically [2, lo]. This problem, although linear, embodies all the essential 
features of the incompressible Navier-Stokes equations and serves as a model to 
assess the effect of the treatment of the pressure boundary condition on the overall 
time-accuracy of the scheme. The choice of a compatible initial conditions is very 
important for some numerical algorithms [lo] in order to obtain a unique pressure 
solution; a compatible two-dimensional initial field is given by 

u = [k cos 1 sinh(ky) + 1 cash k sin( sin(kx) (lla) 

v = [--OS 1 cosh(ky) + cash k cos(2y)] cos(kx), (lib) 
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where ~=(-u/v-~*)~~~, and k is the streamwise (x-direction) wave number. We 
would like to point out, however, that in the method proposed here the initial 
inconsistency can be eliminated in one time step with the use of Eq. (4f), which is 
of elliptic character [Z]. Here, we consider the case v = 1 and k = 1 which 
corresponds to streamwise periodicity length L, = 271. All eigenvalues (T for this 
system are real and negative so the system is stable. We consider the least negative 
(most unstable) symmetric mode (a= -9.317739), which is the dominant mode 
resolved by the direct numerical simulation. 

In the following tests the accuracy of the various schemes is examined by 
computing a decay-rate 5 which is defined as (following [lo]), 

+ -&n4Y=o, t+ T) 
VT o(y=O, t) ’ (12) 

where the time period T is taken to be T= 0.3; with the above parameters the 
energy of the initial field has been reduced by almost live orders of magnitude after 
the period T. The computational domain and the velocity field at time T= 0.3 are 
shown in Fig. 1. A very high-resolution spectral element mesh was employed to 
eliminate any residual spatial discretization errors. We first investigate the effect of 
the pressure boundary condition for constant time step At = 0.01; in Table I we 
summarize the results of several simulations corresponding to different combina- 
tions (J,, Ji). The classical splitting scheme corresponds to ap/dn = 0 (J, = 0) (first 
row); in the second and third rows results are presented for (J, = 1, 3) respectively; 
in the second and third column the reported results correspond to Euler-backward 
and Crank-Nicolson integration schemes for the linear terms (Ji = 1,2), respec- 
tively. It is seen that although the latter effects the accuracy of 5, it is actually the 
pressure treatment that dictates the accuracy with the smallest error (10P4) to 
occur for the highest-order pressure boundary condition (J, = 3). 

FIG. 1. Velocity vector plot of a decaying Stokes flow in a channel at time t = 0.3 units 
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TABLE I 

Effect of Pressure Boundary Condition At = lo-’ 

Int. Order 

EB CN 

J, = 0 - 8.78424 -9.185184 
J,= 1 -8.916906 -9.321403 
J, = 3 -8.905312 -9.314893 

To examine the order of accuracy in more detail we carried out simulations for 
various time steps dt for two different integration schemes: first with (J, = 1, J, = 2) 
corresponding to Euler-forward for the pressure boundary condition and 
Crank-Nicolson for the viscous terms (EF/CN); and second with (J, = 3, Ji= 2) 
corresponding to third-order Adams-Bashforth, Crank-Nicholson, respectively 
(AB3/CN). We also obtained, for reference, results of a similar spectral element 
simulation that is based on the Uzawa (non-splitting) first-order scheme [14]. In 
Fig. 2 we plot the error in the decay-rate d versus time step At for these three 
schemes. It is seen that indeed the AB3/CN scheme obtains second-order accuracy 
consistent with the aforementioned analysis. It is also verified that the (EF/CN) 

0 0 d d 
O--o.26 O--o.26 0 0 

,,,,I, I ,,I,, I I I I I I I I I ,,,I, ,,,,I, I ,,I,, I I I I I I I I I ,,,I, 
0 0 .Ol .Ol .02 .02 .03 .03 .04 .04 .05 .05 

At At 

FIG. 2. Error in decay-rate versus time-step for the Stokes flow of Fig. 1: solid line, Uzawa scheme; 
A, Euler-Forward/Crank-Nicholson scheme; 0, Adams-Bashforth 3rd/Crank-Nicholson scheme. 

581,97,2-12 
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TABLE II 

&Scheme Accuracy At = lo-’ 

0 (CN) 0.1 0.2 0.4 0.5 (EB) Uzawa 

6 -9.314897 - 9.229633 - 9.146342 -8.984164 -8.905312 -8.905312 

scheme obtains second-order accuracy; this result is also in complete agreement 
with the analysis reported in [2], where it was shown that a first-order pressure 
boundary condition of the form employing the tangential velocity (Eq. (5b)) can 
result in second-order overall accuracy; it is also consistent with our previously 
described order of magnitude analysis (Section 2.3). Finally, the zero-order pressure 
boundary condition leads to identical results as the Uzawa scheme, i.e., first order. 

To examine the stability of the above schemes and in particular the effect of the 
explicit treatment of pressure boundary condition we carried out a number of tests 
with relatively large (LIZ = 6( 1)) time steps. After systematic experimentation we 
concluded that schemes that incorporate the Euler-backwards integration for the 
linear terms are stable irrespective of the order of the boundary condition. 
However, use of the Crank-Nicholson scheme may lead to instabilities for 
large time-steps; here, for example, this instability first appears at At =O.l. 
Such an instability has also been realized by others [lo] and is referred to as 
short-wave instability. To overcome this we replaced the Crank-Nicolson rule 
with the e-scheme that introduces damping and is more stable [16]; indeed the 
resulted overall scheme eliminates the short-wave instability. However, its accuracy 
although of formally second-order it degrades relatively fast as 8 + 0.5 
(approaching the Euler-backwards limit); this is verified in Table II, where we 
compare the predicted decay-rate d using various values of the parameter 8. 

FIG. 3. Steady-state streamlines of Stokes flow in a periodic grooved channel. 
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3.2. Grooved Channel Flow 

To further investigate numerically the stability of the scheme we solved an 
inflow/outflow Stokes problem in the grooved channel geometry (Fig. 3). The 
results from this experiment verified our previous conclusion, i.e., the instability 
present at relatively large At is due to the Crank-Nicholson rule and can be 
suppressed using a O-scheme. This is illustrated graphically in Fig. 4, where the 
time-history of the streamwise velocity component at a fixed point is plotted for 

(a) X-Vel 

0.1084e-01 

Time 10.00 

0.5993 

(b) X-Vel 

Time 

(c) X-Vet 

0.1CHJO 
Time 10.00 

FIG, 4. Velocity versus time at point (A) (see Fig. 3) for different integration schemes: (a) 0=0, 
At=lO-*; (b)0=0.1, Af=lO-‘; (c)0=0.05, Ar=lO-‘. 
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various values of 8; it is seen that a minimum amount of damping is required to 
eliminate the aforementioned instability. In order to also examine the effect of the 
new formulation on the incompressibility of the simulated field we compute the 
streamwise velocity profile at the outflow using three different formulations: (A) the 
Uzawa formulation in which the incompressibility constraint is satisfied exactly, (B) 
the classical splitting scheme with zero-order pressure boundary condition, and (C) 
the new formulation. It is seen in Fig. 5 that after 50 time steps when a steady state 

0.9458 

(a) x-w 

0.8068 

(b) x-w 

FIG. 5. Streamwise-velocity profile of the Stokes flow described in Fig. 3 computed at the exit of the 
domain using different time integration schemes: (a) Uzawa, (b) classical splitting, (c) splitting with 
improved pressure boundary condition. 
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FIG. 6. Stability diagram of the mixed explicit-implicit Adams-Bashforth/Adam-Moulton of third 
order. The curves correspond to different values of the damping coellicient 1 (p = 0 corresponds to the 
explicit scheme). 

is established (starting from zero initial conditions) there is a significant error 
(15 %) in the mass exiting the domain for simulation (B), whereas there is only a 
0.2% error corresponding to formulation (C). A consistent formulation for outflow 
boundary conditions is currently underway to address the problems associated with 
outflow boundaries in unbounded domains. 

The implementation of the above formulation to higher than second-order time- 
accurate schemes requires the incorporation of a higher-order integration rule for 
the linear terms. To achieve, for example, third-order accuracy a third-order 
Adams-Bashforth scheme for the pressure BC should be followed by a third-order 
Adams-Moulton scheme for the viscous corrections. The latter is only conditionally 
stable, however, with a relatively small region of stability that diminishes for 
higher wave numbers; this illustrated graphically in Fig. 6, where we plot the 
stability diagram of a mixed Adams-Bashforth/Adams-Moulton scheme. Numerical 

TABLE III 

Stokes Flows in a Groove with Values of U at a Fixed Point 

0.005 
0.01 
0.1 

AM3 EB CN AM3 EB CN AM3 

0.4087 0.40339 0.4073 
0.4234 Unstable 0.4158 Unstable 0.4158 Unstable 

0.5992 Unstable 0.5991 Unstable Unstable 
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experimentation for the same range of parameters as in the previous tests verified 
that indeed a mixed AB3/AM3 scheme is inappropriate for all practical reasons; 
results are summarized in Table III. In the following section we will introduce a 
new class of integration schemes that can readily be used to construct arbitrarily 
high-order stable schemes according to the formulation of Section 2. 

4. STIFFLY STABLE SCHEMES 

4.1. Stability Properties 
To extend the formulation described in Section 2 to higher-order algorithms we 

need to include high-order implicit schemes for the integration of the linear term. 
In order to avoid severe constraints A-stable methods should be used; however, 
according to Dahlquist [24] theorem multistep methods that are A-stable cannot 
have order greater than two. An alternative approach can be followed by adopting 
stifly stable methods commonly used in chemical kinetic studies. According to 
Gear [ 151 a method is stiffly stable it it is accurate for all components around the 
origin in the stability diagram and absolutely stable away from the origin in the left 
imaginary plane [ 151. Stiffly stable multistep methods are implicit and are available 
up to eleventh order [17]. 

Stiffly stable methods have not been studied thoroughly especially in the context 
of solving the Navier-Stokes equations which have both diffusive and convective 
contributions. As mentioned earlier, efficiency dictates a mixed explicit-implicit 
discretization for the convective and diffusive terms, respectively. The stability 
properties of such mixed schemes are best analyzed by following an approach 
similar to the one given by Gear [ 153 in studying implicit stiffly-stable schemes. 
Our contribution is in extending that approach to investigate the effect of an 
implicit viscous term on the stability properties of an explicit scheme. Geometrically 
the viscous contribution modifies the marginal stability curve in the stability 
diagram; this curve is defined here as the locus in the complex plane of all points 
corresponding to an amplification factor of one. The model equation for our 
investigation is given by 

(13a) 

where U is a constant convective velocity (U = 1) and ,u is a damping constant. If 
we consider periodicity conditions we can obtain the modal equation (for mode k 
and eigenfunction u*), 

F = - pk2u* + &u*; 

for p= 0 we recover the marginal stability curve of an explicit scheme. To construct 
a family of curves we simply assign different values to the constant pk’. 
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Following this approach we analyzed several widely used mixed schemes 
combining different order schemes from the Adams-family. We also developed and 
analyzed mixed pairs consisting of the stiffly-stable schemes for the explicit part and 
appropriate explicit companion schemes. For example, in Fig. 7 we plot the stability 
diagram of a third-order stiflly-stable mixed scheme: we see that this scheme 
is similar to schemes of the Adams-family, where a small amount of dissipation 
stabilizes the convection terms; however, with the important difference that the 
stability region of these combined schemes is significantly broader as seen by 
comparing with Fig. 6. 

4.2. Splitting Method 
Unlike the case considered in Section 2 where integration over one time step of 

Eq. (la) resulted naturally in an Adams-Moulton time-stepping scheme, here we 
shall consider stiffly-stable type schemes in order to enhance stability. StifIIy-stable 
methods for ordinary differential equations are based on backwards-differentiation. 
For a general multistep method we approximate, for example, the time derivative 
in the equation 

au 
at- -f as -J(~~zP+~-~~~oL~zP~), 

i=O 

(14a) 

where for consistency we require yO = c{:J M~. It follows that (14a) can be 
rewritten as 

(14b) 

FIG. 7. Stability diagram of the mixed explicit-implicit stiflly-stable scheme of third-order (p =0 
corresponds to the explicit scheme). 
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We can further make use of the exact relations 

(14c) 

(14d) 

We can now split the integrand on the right-hand side f into several parts as 
f= fl +fi + f3 and evaluate each part independently explicitly or implicitly. 
Following this approach for the Navier-Stokes equations, therefore, we obtain 

YOV “+1-C;:; aqvn-q= _Vjjn+l .lc-’ 
At 

+ 1 &N(v”-*)+vL(V+‘), 
q=o 

(15) 

where the coefficients yo, ~1, are the standard coefficients of (implicit) stiffly stable 
schemes corresponding to order Ji. The coefficients /I, for the explicit contributions 
are different than the ones defined in Eq. (2~) and can be readily computed by the 
method of undetermined coefficient and employing Taylor series expansions. In 
Table IV, we summarize the values of coefficients yo, clq, /I, for schemes up 
to third-order; the first-order scheme corresponds to Euler-forward/backward 
integration rule. 

To proceed with the splitting method we follow the three-step substeps (as in 
Section 2) that satisfy Eq. (15), i.e., 

t--g:; aqV”-Y Jr- 1 

At 
= q;. /~,N(v”+~) in D 

g-; 
-= q7pn+’ 
At 

YOV fl+l-$ 

At = 
v V2vn+’ 

TABLE IV 

StifTly-Stable Schemes Coefficients 

Coetlicien t 

YO 

% 
a1 
a2 

PO 

1 st Order 2nd Order 3rd Order 

1 312 11/6 

1 2 3 
0 -l/2 - 312 
0 0 l/3 

1 2 3 
0 -1 -3 
0 0 1 

(16a) 
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The boundary condition for the pressure is again given by Eq. (5b), where the 
coefficients /?, are the modified coefficients given in Table IV. 

4.3. Normal Mode Analysis 

The methods introduced in Sections 2 and 4.1 can be analyzed for both stability 
and accuracy using a normal mode analysis applied to a general-geometry domain 
for a Stokes problem. 

4.3.1. Continuous problem. Taking the divergence of Eq. (la) and dropping the 
nonlinear terms we obtain ap equation for the pressure given by 

vp=o (17a) 

while taking the V x V x of (la) and, using the incompressibility constraint 
(Eq. (lb)), we obtain 

To proceed we assume the existence of normal mode expansions in the form 

v(x, t)= f e”lfvi(x) (17c) 
i= I 

PC% f)= f e”“pi(x), 
z=I 

(17d) 

where vi(x) are the velocity normal modes known to have decay rates ci with non- 
positive real parts, and p,(x) are the pressure modes. Substituting above in 
Eq. (17b), we obtain the equations that the modes satisfy, 

vp; = 0 We) 

( > a’-v2 V2ViZ0. 
V 

It follows from the above relations that the modes p,(x) are harmonic and satisfy 
a maximum principle theorem and that the modes vi have a harmonic part and an 
oscillatory part since Re[o,] < 0. 

4.3.2. Semi-discrete problem. Using an implicit integration multistep scheme we 
can write the Stokes equation in a semi-discrete form as 

YOV n+L-g=; aqV”-Y J,- 1 

At 
= -Vp”+l+v c p,v’(p-4). (Isa) 

q=o 

Assuming for the normal modes that (vr, p;) = ~~(i~, pi), we obtain 

(ii°K ,p’K’) i i = -K vpi + vR(u) V2ti, (18b) 
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where we define the linear operators P, R as 
J,- I J,- 1 

P(K)= 1 c$lc-9 and R(K)= 1 /Qc? (18c) 
9=0 l/=0 

Following a similar approach as before for the continuous problem, we now obtain 

v2pi = 0 (18d) 

( > Lv2 v2ti=o, 
V 

We) 

where oi = y. - P(K~)/A~R(Ic~). This expression is general and is valid for any multi- 
step method, for example, for a Crank-Nicholson scheme, y. = 1, P = 1, and 
R = (K + 1)/2, and for a second-order stiffly stable scheme, y. = 3/2, P = 2 - l/216, 
and R=K. 

We find therefore by comparing with the results of the continuous case that the 
same modes and same oi are appropriate for the time discretized problem. 
However, negative ci implies that K is less than unity for any stable time-stepping 
scheme. 

4.3.3. Splitting formulation. Uncoupling of the governing equations (1) can be 
obtained by introducing a non-divergent intermediate velocity projection v* and 
corresponding eigenmode i*. Again assuming a modal decomposition with 
amplification factor R we obtain 

i* - P(R)i = -VpC At (19a) 

v.v*=o (19b) 

yokv - v * = v AtR(A) V’v. (19c) 

Elimination of v followed by an operation with V x V x and using (19b) gives 

Yo-w~v2 V2"*- 5 

v AtR(Z) 
] v +7’)v”i*=o, (20) 

where here we can again define a decay-rate 6 equal to the first term in 
the parenthesis above as before. The final velocity i, however, satisfies a different 
equation obtained from (19~) of the form 

We see, therefore, that v* satisfies an equation similar to that of the continuous 
problem and thus has two non-divergent modes (the pressure and the time-stepping 
modes corresponding to the Laplacian and time-dependent operator in Eq. (21) 
respectively). However, the final velocity i has an extra mode producing a numerical 
boundary layer of thickness 1 cc (v At) ‘I2 (the last operator in Eq. (21)). In the 
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following, we analyze the effect of this splitting error on the accuracy and stability 
of the overall scheme. 

4.3.4. Two-dimensional example with one periodic direction. Here we re-examine 
the flow problem described in Section 3 and analyzed also in [2]. For the 
x-direction being periodic we can write the equation for the modes corresponding 
to wave number k as 

v(x, y) = (KY), Q))e”“. (22) 

From [2] we get the (symmetric) eigenvalue equation for a non-split formulation 
as 

ktanhk= --ptanp, where p2 = - k2 - u/v. (23) 

For the current problem the general operators appearing in (4a)-(4c) can be 
rewritten as 

V2=D2-k2, ; V2-?42+~2, V2-2&4-A2, Pa) 
v Ati? 

where we have used the definitions 

~2~ ek2-c &&+?& (24b) 
V’ v A& 

B= P(C), R= R(E) (24~) 

D=d 
&’ 

WI 

The general form of the solution 15, 0” * that is symmetric about y=O is 

i5* = y,A * cash ky + @* cos /Iy VW 

i?=~coshky+&os/?yf&oshAy. (25b) 

We now consider each of the modes (k, p, A.) separately; the first two are non 
divergent as was mentioned earlier. Considering, for example, first the mode k as 

a,* = y,A * cash ky, fik = A cash ky (26a 

and substituting in (19c), we obtain 

A”= A*/I?. (26b 

The corresponding velocity in the x-direction is obtained from the divergence-free 
condition 

DiTk A* 
12,= -z=isinhky---. (26~) 

R 
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Similarly, for the second mode we obtain the relations 

Q@* 

. w  

and 
B 

ii, = - r B sin li,v. 

Finally, for the non-divergent third mode for which UT = 0, we obtain again 
from (4a) 

-h,= -RVp At (28a) 

and therefore the field vj. is irrotational, i.e., V x v,=O; this implies that the 
following relation holds: 

Dii, = ik6,. 

To summarize, we can now express the modes (6, fi) as (setting 2: = C*) 

(28b) 

A* YCJ* 6=-coshky+- cos /Tiy + C* cash lly Wa) 
I? 1? 

fi=iA"sinhky-- 
iyo,iiB* 

R kj3 
sin ,Zy + iC* i sinh Ay. (29b) 

At this point we can find C* in terms of A* by employing the boundary condi- 
tion at y = 1 (ii = 6 = 0), i.e., 

c* = _ A* cash k(fi tan /I + k tanh k) 

I? cash J(p tan p + (k*/i) tanh A)’ 
(30) 

Using the exact eigenvalue relation (Eq. (23)) and the definition equation (24b), we 
also obtain 

fi tan /I - p tan ,LJ = O(Aa/v), (31) 

where we define do = 6 - c. Substituting this last equation in (30) and normalizing 
appropriately with cash ,I we see that the amplitude C* of the boundary layer error 
term is proportional to da/v, i.e., 

C* cc da/v. (32) 

This last equation suggests that the error in growth rate which characterizes the 
time-accuracy of the scheme is directly proportional to the amplitude of the 
divergent mode. 

The boundary condition for the pressure can be found from (19) applied at the 
boundary. This is an exact equation and has the form 

E Vp = vR( I?) V*v, (33) 
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where we assumed here that v = 0 at the boundary. However, this relation results 
in a coupled system since V2v”+’ is not known at the pressure step, so that an 
explicit treatment should be sought. For example, two first-order relations that can 
be used are 

l?vp=vv=i Wa) 

nvp= -vvxvxi, Wb) 

where in the latter equation we also incorporated the incompressibility constraint, 
i.e., V v = 0. It follows therefore from (19a) with v(y = 1) = 0 that 

u*+vAtD*o”=O Wa) 
v*-ivkAtDii=O. Wb) 

Substitution of v*, ii, 5 in (35at(35b) gives 

A*(yO+~)coshk+B*yO(I-y)cos)i+C*vl’Atcoshi=O (36a) 

,4*().0+~)coshk+B*y,,(I-~)cos~+C*vk2Atcosh~=0, Wb) 

coupled with the boundary conditions ii = v” = 0; to satisfy the boundary conditions 
and after substitution from (35a) the following determinant vanishes: 

y,i? + v At2k2 P - ji2v At ,l=v At 
1 1 1 = 0. (37) 

k tanh k 
tanh A 

-fi tanji kzT 

The determinant for the case (35b) has a similar form with the term A2v At above 
replaced by the term k*v At. 

We solve the above determinantal equation for the particular case of a second- 
order stiffly-stable scheme. The eigenvalue Iz corresponding to (37) agrees with the 
analytical expansion for K of the non-split scheme up to first-order terms, which 
implies a reduction of the accuracy order of the overall scheme to order one, despite 
the second-order time-stepping scheme employed. However, the eigenvalue due to 
(35b) agrees with that of K to second order as also found by our boundary layer 
analysis. The expansion for the amplification factor 12 of the splitting scheme is 

r;==~+Arc @a) 
= (1 + rs At + CT~ At2/2 + o3 At3/3 + B(At4)) (38b) 

+ (K, At* + rc2 AP2 + ICY At3 + K., At7’2 + 0(At4)), (38~) 
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where we find that ICY = ICY = 0 and that the next two coefficients ICY, rcq are given 
by 

K3 = 
4p*v~* sin 2b 
u + 3 sin 2p W) 

g&P v312k2u2 cos* /-I 
K4’Q 2i+sin2p ’ (39b) 

We alsonote that Aa which determines the boundary layer amplitude is given by 

Aa = K3 At2 + Kq At5’* + O(At’). (40) 

It is seen therefore that the decay-rate d computed using the stiffly-stable splitting 
scheme is accurate to second order in At if the rotational boundary condition 
(Eq. (5b)) is employed for the pressure. We also see using (32)-(40) that the error 
in the numerical boundary layer is of second order. 

5. NUMERICAL RESULTS-PART 2 

5.1. Stokes Channel Flow 

In this section we investigate numerically the stability and accuracy properties of 
the schemes described in Section 4. As a first test we consider the Stokes flow 

FIG. 8. Error in decay-rate versus (Al)) for the Stokes flow described in Fig. 1. 
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problem in a smooth channel which also examined in Section 3. Here, we 
demonstrate that the new schemes are not only stable but they also retain their 
formal accuracy. To this end, we carry out simulations for several values of the time 
step At for the third-order scheme (Ji = 3, J, = 3) and compute the decay-rate 5. 
The set of parameters as well as the initial field remains the same as in Section 4. 
The results of these simulations are plotted in Fig. 8 as a function of At3; the 
straight line proves that the formal third-order accuracy of the scheme is indeed 
retained. In Fig. 9 we also plot the divergence across the channel at a fixed position 
x for the two types of the pressure BC; we see that the rotational form almost 
completely eliminates any residual divergence errors. A detailed study on the 
efficient removal of boundary-divergence errors is given elsewhere [ 181. 

5.2. Wannier Flow 

As a second test problem we consider a two-dimensional Stokes flow past a 
circular cylinder placed next to a moving wall. The available exact solution due to 
Wannier [ 193 for this complex-geometry flow allows for reliable evaluation of the 
time-differencing error. This problem and its variants have been recently used for 

FIG. 9. Profile of divergence of the velocity field of the Stokes flow of Fig. 1 for two different types 
of pressure boundary conditions: solid line, api& = v Ei= 0 /I, V2 Vnm4 ri; dashed line, ap/an = 
-v~~=,~yvxo.ri. 
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FIG. 10. Spectral element mesh for the Wannier-Stokes flow (K= 28; N= 9). 

code verification purposes [2&22]. The exact solution and the particular 
parameters we use in the present test are given by 

UT - 2(AK+Fv)[(s+~)+~(s-g)] 
I 2 

(41a) -Fln(~)-$[(J+Z1J-2Y(~Y)‘lD 

c=~(A+F?I)(K2-Ki)-2Bx~s2+y)-2cx~2-B), (41b) 
1 2 I 2 

FIG. 11. Steady-state streamline pattern of the Wannier-Stokes flow 



where we define 

A=-E 
In(r) 

K, =x2 + (s + y)*, 
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0=-U, 
u F=- 

1W) 

(42a) 

K, =x2 + (s - J))~, s2=d2-R2, d+s 
T=d-s. (42b) 

Here, we denote by R = 0.25 the cylinder radius, by d= 0.5 the distance of the 
cylinder center from the wall, and by U = 1 the velocity of the moving wall. The 
mesh employed for this simulation is shown in Fig. 10. Dirichlet BC were used at 
the boundaries of the truncated domain computed from the exact solution. The 
computed steady-state solution is shown in Fig. 11 in the form of streamline 
patterns, and is indistinguishable from the exact solution. In Fig. 12 we plot 
the convergence history to the final steady state presented as the L,-error at 
At = lop2 versus time for four different schemes: (1) the classical splitting scheme 
(Eq. (3)) using the inviscid-type boundary condition (4b); and the new stiffly stable 
schemes corresponding to (A) first-order, (B) second-order, and (C) third-order, 

2xlo-5 - 

(h) 

CC) 

O- 
k/I I //1,/l,,,l,,,l,,,l,,,l,,~ 

0 20 40 60 80 100 120 
TIME 

FIG. 12. Error (L,) versus time for the Navier-Stokes flow. The different curves correspond to (a) 
tirst-order stiflly-stable scheme, (b) second-order stiflly-stable scheme, (c) third-order stiffly-stable 
scheme. The corresponding error using the classical splitting scheme is three orders of magnitude larger. 

581.97.2-13 
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respectively. The superiority of the new pressure boundary condition is reflected in 
the difference between errors induced by (1) and curve (A), whereas the high-order 
time-accuracy gain is realized by comparing the curves (A), (B), and (C). The 
formal accuracy of the method is tested in Fig. 13, where the &-error is plotted as 
a function of At2 for the second-order scheme (Jj = 2; J, = 2); the straight line is 
indicative of second-order convergence. 

5.3. Kovasznay Flow 

Finally, we test the stiffly-stable schemes in the context of Navier-Stokes 
computations. To this end, we consider the laminar flow behind a two-dimensional 
grid, the exact solution of which was given by Kovasnay [23]. The solution is given 
as a function of the Reynolds number R in the form 

u = 1 - eiX cos(2?ry) (434 

v = & .+ sin(27ry), (43b) 

where 2 = R2/2 - (R2/4 + 47r2)r12. The inflow/outflow boundary conditions are also 
defined by the above relations. The computed steady state streamline pattern is 

rlI I III I 
O 2x10-O 4x10-I 6x10-s 6x10-’ 1O-5 1.2x10-s 1.4x10-’ 1.6x10-s 

(d 

FIG. 13. Plot of error (L2) versus (At)’ demonstrating the second-order time-accuracy of a 
second-order stiffly-stable scheme. 
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FIG. 14. Steady-state streamline patterns for the Kovasznay flow at Reynolds number R = 40. 

0003 -1 
I ” ’ I ’ ” I ” ’ I ’ “/“‘I !. 

i;1) 

.00025 - 

0002 - 

00005 - 

o- - 
I I 1 I I I I I I I I,,, I 1 / 

0 20 40 60 60 IO’) 
At 

FIG. 15. Error (L,) versus time for the Kovasznay flow: (a) classical splitting; (b) first-order mixed 
stiflly-stable; (c) second-order mixed stiffly-stable; (d j third-order mixed stitlly-stable scheme. 
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TABLE V 

At=3.072x10m3 

J, = 0” J,, = 1 J, = 3 

AB33CN’ AB3-CN SSI’ ss2 ss3 

e2 1.465 x lo-’ 3.463 x 10 -4 3.427 x lO-4 2.858 x 10m4 2.58 x 10m4 
e, 2.118 x IO-’ 4.779 x lo-4 4.716 x 10m4 4.139 x 10-e 3.795 x 10 m4 

u J, denotes the integration order for pressure BC. 
* AB3 z Adams-Bashforth of third order; CN = Crank-Nicholson 
’ SSl = Stiffly-stable scheme of first order. 

plotted in Fig. 14 at R = 40. A pair of bound eddies occur just downstream of the 
inflow, whereas the streamlines become parallel and equidistant at infinity. The 
computed solution is indistinguishable from the exact solution of Kovasznay [23]. 

In Fig. 15 we plot the L2 error of the solution versus time for different orders of 
integration and compare the stiffly-stable schemes with the classical splitting scheme 
(curve A). We see again that a large error is incurred due to inviscid-type boundary 
condition (Eq. (4b)) and that the order of accuracy is increased with the order of 
integration. To compare in more detail the stability and accuracy properties of the 
schemes presented in Sections 2 and 4 we carried out numerical simulations at a 
fixed time step AZ = 3.072 x 10P3. The results are summarized in Table V for the 
various cases in terms of the maximum pointwise error (L, norm), as well as in 
terms of the weighted-average error (L, norm). There is almost an order of 
magnitude decrease in both errors when the improved boundary condition is 
employed compared to the inviscid-type boundary condition (4b). It is also seen 
that the stiffly-stable schemes are superior regarding accuracy to the schemes based 
on the Adams-family integration rules. Regarding stability, the new schemes are 
also more stable than any mixed schemes of the Adams-family in agreement with 
the stability diagrams (Figs. 6-7) corresponding to the linear problem. Numerical 
experimentation indicates that for the current problem there is at least an order 
of magnitude gain in stability in comparing the second-order schemes, while 
the stability of the third-order stiffly-stable scheme is dictated by the explicit 
part and an approximate CFL value of one; the corresponding third-order 
Adams-Bansforth/Adams-Moulton (AB3/AM3) scheme is unstable for all values of 
time-step At. 
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